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Abstract

In the paper, we have proved a result on absolute summability factor
method of an infinite series by using quasi (ﬂ — }/)- power increasing

sequence, which generalizes some of the known results.
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1. Introduction

A positive sequence (bn) is said to be almost increasing sequence if there exists a positive increasing

sequence (Cn) and two positive constants A and B such that ACn < bn < BCn. Every increasing

sequence is almost increasing sequence but the converse need not be true as can be seen from the example,

n

-1
say bn = ne[ (see[5]). A positive sequence (]/n ) is said to be a quasi ,3 — power increasing sequence
if there is a constant K = K(ﬂ, 7/) >1 such that Knﬂyn Zmﬂ]/m holds forall N>M2>1. It should

be noted that every almost increasing sequence is quasi ,3 — power increasing sequence for any ﬂ >0, but

the converse need not be true as can be seen by example yn = n_ﬂ for ﬂ >0 . ﬂ =0 , then (}/n)

is simply called a quasi increasing sequence.
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o0

Let D, ap be agiven infinite series with (Sn ) as the sequence of its partial sums. Let (pn) be a sequence
n=0
of positive real numbers such that

n
Pp= Ypy 2o, asn—>o (P_j=p_j=0,ix1)
v=0

The sequence — to — sequence transformation

1 n
th=—2_PySy
Py V=0

o0

defines the sequence (tn) of (N, Pn ) transform of (Sn) generated by (pn) .The series > ap issaid

to be summable

n=0

Np,¢n;5‘k k>1,5>0and T =0k +Kk—1,if (see[6])
2 4 | th—tpy| <o,

where (¢n ) be any sequence of positive real constants.

Remarks : In particular case, we observed that

1. For 6 =0, the summability ‘Np,¢n;5‘k reduces to ‘N, pn’¢n‘k summability due to
W.T.Sulaiman [10]
P, _ _
2. For 0 =0and ¢y = -n , the summability ‘N p,¢n;5‘k reduces to ‘N, pn‘k summability due
Pn
to H.Bor [1]
Pn _ _
3. For ¢ = — , the summability ‘N p,¢n;5‘k reduces to ‘N, pn;6‘k summability due to H.Bor
Pn
[1].
4. If weput 0 =0 and @gpn =N, for all values of N, then Np,¢n;5‘k summability reduces to
|R, Pn |k summability due to W.T.Sulaiman [9]
5. If @ =N, for all values of N, the summability ‘Np,¢n;5‘k reduces to |R, pn;§|k,
summability due to W.T.Sulaiman [9]
P _
6. Ifwetake @y = —> and P, =1 for all values of N, then |N p,¢n;5‘k reduces to |C,1;5|k
Pn
summability which on putting & = O which becomes |C ,llk due to T.M.Flett [8].
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2. Main Result

The aim of this paper is to prove a result by considering ‘Np , ¢n ; 5‘k summability. In fact, we shall prove

the following result

Theorem 1: Let (pn ) be a sequence of positive numbers such that

P, =0(npy) asn— oo . (2.1)
If (X n) be quasi (ﬂ - 7/)- power increasing sequence for some 0 < £ <1 and the sequences (ﬂn ) and
(ﬂn )are such that
|AZn| < Bn (2.2)
Pn—>0as n—owo (2.3)
o0
Y NXp|ABn| < (2.4)
n=1
2n|Xn =0(1) as n -, (2.5)
m k k
> ¢T Pn |Sn| :O(Xm) as m-— o (2.6)
n=1 N{ Py
and
o (P ) ¥ 1 R 61
D [_n] -~ -0 (_Vj | (2.7)
n=v+1\ Pn P11 Py Ry

Pn Pn

n

where (¢n ) be a sequence of positive real constants such that ( J is non-increasing sequence,

o0
— 1
i i ' > < —
then the series n:EOanﬂn is summable ‘N p,¢n,5‘k ,k>1and0<7< -

3. Lemma:

We need the following lemma for the proof our result.

Lemma 1[11, lemma 2.2] : Let (Xn) quasi (,B—]/) - power increasing sequence, 0 < # <land ¥ >0
, then the condition (2.3) and (2.4) implies

NBnXp <o (3.1)
e}
and z,b’nxn < o0 (3.2)
n=1
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4, Proof of the Theorem 1:

o0

Let (tn) be the sequence of (N, pn) means of the series Zanin , then, by definition, we have
n=0
1 n 1 n \' 1 n
tn=P—Z P_Z Py D.ai '=P—Z -R1)aydy
n V:O : -= :
Then, for N =1 and by using simple calculation, we get
th =ty = va 13y Ay (4.1)

Using Able's transformation to the right hand side of (4.1), we get

t_t PnSn4n Pn nilp s, 2y Z P,sy AL
n—th-1 = - VoV + v
I:)n PrPn1 v=1 P I:)n 1y=1
= tn,l +tn,2 +tn,3 , say
Since

k k k k k
thg +tn2 +tna| <3 [[tna] +ltn 2| +[tng| |-
Thus, in order to complete the proof of the Theorem 1, it is sufficient to show that

> P ‘tn Z‘ <oo ,for z=12,3.
n= N>

k
m J—
-0t 2 a7 [ 2] ool (anlf e

Pn
. k
=0(1) z 4 ( J |sn| An|,  by(25)

k

k
m k
~o) "Eain(2, o] [ j|sv| +0) lim| 3 ¢,I[@] on
n=1 I:’n
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m-1
=0(1) D |A4[Xp +0@Q) |Am| Xm, by (2:6)
n=1

m-1
=0(1) D aXn+00) |[Am| Xm.  by(22)
n=1

= O(l) asm-—>o0 , by ((3.2) and (2.5)).

Again,

m+th
n,2

k
m+l

nzz ¢

-p n-1
n_'s Py Sy Ay
Pn Pn—l v=l

k k
m+1 Pn n-1
o(1) 2 4, [P 5 1] {Vzlpvlwllﬂvl}

g o Y (P Y ko, k-1
=0(L ALY By AL |t =—
g n§2[ Pn j (pnj P {Z Pl |V|H Ph1 Vv Z }

1
=0(1) vglpv|5v|k|’lv| m2+ [¢”S”J [ ]

n=v+1
m (@ p T k m+1
=01 VEV sy| |4
O L I o j
m ol (R T
=0(1 V2 syl [Ay], by(2.7)
g v§1¢V(PvJ (pv] ol Pl ey
k

M T( Py k
=0(1 — | |sy| |4
@) v§1¢v (PvJ [sv["[Av|
= O(l) asS M — oo, Proceeding as in case ‘ tn,l‘

Finally we have,

m+1
> 'nd
1 1 k
m+ T p n—
= 24, 1 RysyAdy
n=2 M |PaP,_; v=l
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k()m+1¢pTPT_k1
sv| v ot n =
V§1PV| V| IBV n=%+1( Pn j [an P

k
m T(P k
2% (P—Jj [ g, ) v

k k
m- Voo 1! Bj k m  T1( Pj k
VEﬂA(Vﬂv] 29 [F:j sif o) ma 2 4 [F:] si
- m-1
ngA(vﬁv)xv +0(1) \Elx\,wV 4| +0@M) mBy X,
m-1 m-1
Vglv\ﬁv\xv +0(1) Z Aus1Xy +0(1) mBy Xm

as Mm-— oo, by (2.4),(3.2) and (3.1).

have shown that

(0 0] T k
> ¢ ftnz| <o for 2=123.
n=1 N

which completes the proof of the Theorem 1.

5. Applica

If we con

tions:

sider the special cases of our Theorem 1, then following results are the consequences of our

Theorem 1, which we have put in the form of corollaries as follows:

Corollary

sequence

Corollary

1: It must be noted that, every almost increasing sequence is quasi (,B — ]/)- power increasing

for y = 0 .Thus, Theorem 1 generalizes our result [7].

P _
2:1f 0=0and ¢p = -n , then our results ( Theorem 1 ) reduces for ‘N, pn‘k summability
Pn

,which extend the result of [2].

Corollary 3: If & =0, then our results (Theorem 1) reduces for ‘N, Pn, ¢n ‘k summability.
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P _

Corollary 4 : If @ = —n, then our results (Theorem 1 ) reduces for ‘N, pn;5‘k summability ,which
Pn

extend the result of[3].

Corollary5:1f & =0 and ¢n =N for all values of N, then our results (Theorem 1 ) reduces for |R, pn|k

summability.

Corollary 6 : If ¢n =N for all values of N, then our results (Theorem 1 ) reduces for |R, pn;5|k

summability.

P,
Corollary 7 : If ¢n =N and Pp =1 for all values of N, then our results (Theorem 1 ) reduces for
n

|C,1;5|k summability.

P
Corollary 8: If ¢n =_n and O =0and Pn =1 forallvalues of N, then our results (Theorem 1) reduces
Pn

for |C,1|k summability (see[4]).
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